国际比较视角下我国社会保障税最优税率设计
付伯颖 陈子昂 夏宁潞/东北财经大学
关键词:社会保障税 最优税率 面板门槛模型 对应分析
一、引言
社会保障制度作为促进社会公平的重要手段,在现代社会中居于不可或缺的地位。目前,我国社会保障的筹资主要采用收费形式,即企业和职工按照工资的一定比例缴纳社会保险费,这种制度的建立与我国国情相符合,具有其合理性。然而,随着我国社会经济的发展和变化,社会保险缴费制度的种种弊端逐步显露,主要包括筹资能力不足,法律基础缺乏,征管和使用不便等。针对上述弊端,众多学者建议开征社会保障税,通过“费改税”,建立起更完善的社会保障制度,扩大覆盖面,提高筹资能力。从制度设计上看,开征社会保障税的关键因素之一是税率的设计。如何确定一个最优税率,使社会保障税在对市场扭曲程度最小的前提下,筹集更多的资金,建立更完善的社会保障制度,兼顾效率与公平是理论和实践中面临的重要课题。
学术界对最优税率问题进行了激烈讨论,董文赜(2002),范雯(2008),陈玲(2009)等学者结合国外经验和我国实际情况,提出了设计税率时要考虑的问题,认为我国税率应该尽量从轻,但并没有得出具体的最优税率。邵晓琰(2015)构建了一个社会保障税制度下的生产、消费、投资的封闭型离散时间宏观总量经济模型,根据庞德里亚金极大值原理,证明了最优税率的存在性。另一些学者给出了具体税率设计方案,所设计的总税率基本在30%左右,例如:贾康等(2001),汪柱旺等(2005)在老龄化率提高的背景下,结合我国的就业、人口等方面的数据进行分析预测,分别得出最适合我国经济发展与社会需要的税率为30%和31%;阎坤等(2003)根据完全积累模型等,进行数学推导,分税目求解并加总得到最优税率为29%左右。
前人研究多数是在理论层面上进行了规范分析,虽有部分学者进行了定量分析,却只是利用我国数据,基于数学公式进行数理模型的构建,并没有对结果进行实证检验,或者缺乏国际数据的检验,因而结果的可信度和实际应用性有限。本文立足于国际视角,在前人研究的基础上,既考虑了我国实际国情,又结合部分西方国家的数据,采用定量分析与定性研究相结合的方法,在经过回归分析和对应分析得出最优税率之后,又结合我国实际情况进行解释,使结果更具有可信度和说服力。
本文余下的结构安排为:第二部分是理论分析,提出了研究的理论基础和假设。第三部分是实证分析,通过建立模型和实证检验,确定最优税率。第四部分结合我国国情,采用对应分析方法,得到适合我国当下的最优税率,第五部分是结论和政策建议。
二、社会保障最优税率理论分析
有关税收收入和税率之间关系的经典理论是美国供给学派经济学家拉弗(Arthur B Laffer)提出的拉弗曲线,他认为,要征收等量的税收收入,可以通过不相等的两个税率实现;政府税收收入随着税率的升高先增加后减少,这其中必然存在着某一个转折点。这为政府制定税收政策提供了理论依据。考虑到税率对税收收入并非只有促进效应,政府应该综合考虑提高税率对税收收入的促进效应和抑制效应,最优税率可能存在于税收收入-税率曲线斜率显著变化的转折点。
社会保障税的税收收入与税率之间的关系比较复杂,既有税率对税收收入的直接影响,也有税率通过影响劳动的供给和需求使总产出发生变动,进而通过影响税基而对税收收入产生的间接影响。社会保障税收入和税率之间的关系仅从理论上几乎无法确定,因为间接影响是否存在,以及如果存在,其大小相对直接影响而言是否显著,都需要通过实证检验才能得到确认。
同时,社会保障税作为税收体系中的一个税种,其税率设计要考虑税种之间的配合和整体经济的运行。在间接影响较大时,即使其大小未超过直接效应,税率的提高可以增加税收收入,但也会较大地侵蚀税基、减少劳动供给,影响到其他税种的征收和总产出,这样的税率也是不可取的。因此,本文假设,最优的社会保障税率存在于税率对税收收入的直接影响和间接影响比重由大到小发生显著变化的转折点。在最优税率前后的税率区间内,税率的提升带来税收收入的增速显著不同。
三、实证分析
(一)面板门槛模型
根据理论分析,在直接影响和间接影响的共同作用下,关于税收收入和税率的曲线可能存在某一个或某几个转折点,其前后的不同区间内,曲线斜率有显著变化。针对这类问题,Hansen(1999)最早提出了门槛模型(Threshold Model),利用门槛变量的不同取值来划分解释变量的不同区间,进行回归分析。同时,该模型还可以通过门槛变量观察值估计出最恰当的分界点,有效避免研究者根据自己主观判断设定分界点带来的误差。因此,本文基于面板门槛模型进行实证研究,其基本计量方程如下:
其中,
(二)数据的选取与变量说明
本文所用到的数据为OECD国家27个成员国中[1]2000年-2013年税收和经济领域的面板数据,数据来源为OECD官方数据库。
本文的被解释变量是人均税收收入,用27个OECD国家每年的社会保障税税收收入总额除以对应的国家人口数得出,表示政府将社会保障税收入用于全体公民之后,平均每人可享受到的份额,衡量一国政府开征社会保障税为全体国民福利的筹资能力。核心解释变量是税率,来自OECD官方公布的各国社会保障税率。门槛变量是税率,与解释变量相同,以反映在不同税率区间内社会保障税收入与税率之间的关系。
为了控制其他影响税收收入的因素,提高模型的解释能力,本文还引入了其他4个控制变量,包括:
①经济增长速度。因为社会保障税的税基是工资收入,与总产出增长关系密切,同时,该控制变量也是理论分析中税率对税收收入间接影响的体现。本文用各个国家每年的GDP增长率来表示各国的经济增长情况。
②老龄化率。社会保障税的主要部分用于各种福利设施和养老保险等,大多与老年人相关,所以老龄化率是影响一个国家设计社会保障税税率的关键因素。本文用各个国家65岁以上人口占总人口的比例来衡量老龄化率,并将其引入模型。
③国家社会保障的地位。社会保障税作为专款专用的税种,其收入主要用于社会保障支出,因此政府社会保障支出的规模也是决定社会保障税收入的关键因素。本文用各国政府每一年财政社会保障支出占一般公共支出的比重衡量政府对社会保障的重视力度。
④工资水平。目前大多数国家的社会保障税是针对工资课税,工资水平是影响社会保障税收入的关键因素。本文用各国每一年职工人均年薪反映工资水平,将其引入模型中。
相关变量考察表和描述性统计见下表1所示。
表1 描述性统计
变量 |
名称 |
均值 |
标准差 |
最小值 |
最大值 |
Y |
人均税收收入(美元/人) |
344.63 |
230.87 |
14.49 |
1252.37 |
t |
社会保障税税率(%) |
31.50 |
13.59 |
4.92 |
57.75 |
C1 |
GDP增长率(%) |
1.98 |
2.93 |
-9.18 |
10.80 |
C2 |
老龄化率(%) |
15.14 |
3.34 |
5.2 |
25.1 |
C3 |
政府社会保障支出占比(%) |
46.56 |
7.39 |
15.54 |
58.23 |
C4 |
人均工资水平(万美元) |
3.69 |
1.85 |
0.7667 |
8.64 |
(三)门槛效应检验
本文采取Hansen提出的自抽样法来检验门槛效应的存在,结果如表2所示。
表2 门槛模型检验结果
模型 |
F值 |
P值 |
BS次数 |
1%临界值 |
5%临界值 |
10%临界值 |
单一门槛 |
40.041*** |
0.000 |
300 |
30.186 |
14.542 |
11.190 |
双重门槛 |
86.239*** |
0.000 |
300 |
-24.816 |
-37.080 |
-43.390 |
三重门槛 |
0.000 |
0.197 |
300 |
0.000 |
0.000 |
0.000 |
注:*为显著性水平,*表示在0.05的水平上显著,***表示在0.001的水平上显著。
根据门槛效应检验结果可以发现,模型通过了双重门槛的显著性检验,证明该模型存在双重门槛,据此,将原模型修正为双重门槛模型,如下所示。
对双重门槛参数值进行估计,结果如图1、图2和表3所示。所得到的门槛参数估计值,就是上文分析中的斜率显著变化的转折点,在这些转折点的左右两侧,曲线斜率发生显著变化,其中斜率由大变小的转折点,为所求最优社会保障税税率。
图1 门槛参数估计图
表3 门槛参数估计表
双重门槛模型 |
门槛估计值 |
95%置信区间 |
门槛估计值1 |
13.346 |
[13.188,30.347] |
门槛估计值2 |
30.347 |
[28.668,34.606] |
(四)回归结果及分析
根据上面对门槛效应的检验结果,构建双重门槛的面板回归模型,对模型进行回归分析,结果如表4所示。
表4 回归结果汇报表
解释变量 |
(1)单一门槛模型 |
(2)双重门槛模型 |
(3)三重门槛模型 |
C1 |
-5.808** (-2.48) |
-5.354** (-2.53) |
-6.126*** (-2.95) |
C2 |
18.26*** (3.92) |
18.07*** (4.31) |
12.70*** (2.70) |
C3 |
1.055 (0.52) |
0.303 (0.17) |
4.368** (2.31) |
C4 |
0.0105*** (14.41) |
0.0110*** (15.78) |
0.00697*** (9.24) |
t_1 |
9.580*** (4.10) |
-0.242 (-0.06) |
-1.898 (-0.40) |
t_2 |
9.553*** (7.62) |
17.16***(8.34) |
|
t_3 |
|
11.17*** (9.47) |
8.625*** (3.87) |
t_4 |
|
|
6.097*** (3.96) |
Constant |
-658.9*** (-8.61) |
-719.4*** (-10.17) |
-496.7*** (-5.67) |
r2_w |
0.509 |
0.600 |
0.486 |
r2_b |
0.597 |
0.628 |
0.660 |
r2_o |
0.517 |
0.572 |
0.573 |
注: t_1:t*I(t<13.346);t_2:t*I(13.346<=t<=30.347);t_3:t*I(t>30.347)。
根据表4数据,在单一门槛、双重门槛和三重门槛的估计结果中,控制变量的系数基本相同,证明回归结果较为稳健。双重门槛回归的拟合优度在0.6左右,表明拟合能力较强。
根据核心解释变量和门槛变量的回归结果可知,税率的两个门槛值为13.346和30.347,将税率划分为三个区间。在税率t<13.346的情况下,税收收入与税率之间的回归系数为-0.242,不过结果不显著,这可能是因为在本文研究的口径下,处于这个区间内的样本不多,无法得出有效的结果;在税率13.346<t<30.347的情况下,税收收入与税率之间的回归系数为17.16,税率每提高1%,会使人均税收收入提高17.16美元;在税率t>30.347的区间内,税率每提高1%,会使人均税收收入提高11.17美元。
实证分析的结果表明,确实存在前文理论分析中的税率转折点。曲线共有两个转折点,一个是t=13.346%,一个是t=30.347%。税率跨越第一个门槛值时,曲线斜率由小变大,不符合最优社会保障税率的要求;当税率跨越第二个门槛值时,其左右两侧的曲线斜率由大变小,符合要求,正是理论分析中所求的最优社会保障税率。
此外,控制变量中,经济增长、老龄化率和工资水平均显著,而政府社会保障支出比重不显著。从控制变量中,可以得出以下结论:
1.经济增长
根据双重门槛回归结果,税收收入与GDP之间的关系并非传统的税额与税基之间的关系,税收收入并没有随着GDP的提高而增加,反而随着GDP的增加而减少。这是因为社会保障税仅对劳动所得课税,雇主和雇员都要承担税负,其增加了企业的用工成本,减少了企业的劳动力需求;税收替代效应的存在也使得雇员减少了劳动力的供给。上述两种效应的存在,使得劳动力市场的均衡点向左移动。劳动作为经济增长不可或缺的生产要素,其投入的减少势必会减少总产出。同时,社会保障税专门用于社会保障领域,政府从经济主体手中筹集到的收入主要用作非生产性支出,对经济增长的贡献不大。综合作用下,社会保障税收入与经济增长之间呈现负相关关系。因此,要审慎确定社会保障税率,不能一味追求过高税收收入,影响经济增长。
2.老龄化率
老龄化率的回归系数为18.07,表明老龄化率提高1%,对应着人均社会保障税收入提高18.07美元。随着老龄化率的提高,各国政府都倾向于通过增加社会保障税收入来筹集资金,证明社会保障税收入是解决养老金缺口等老龄化问题的重要筹资方式。
3.工资水平
人均工资水平的回归系数是0.0110,代表每年人均工资总额每提高1万美元,对应人均社会保障税收入增加0.011美元。其系数符号为正,反映社会保障税收入与税基之间的正相关关系;然而,其系数的绝对值很小,这可能是社会保障税自身的特点决定的。社会保障税为比例税率且相对稳定,同时多数国家对其税基设有上限,使得社会保障税在一定程度上具有“累退性”,因此,在税率的合理区间内,税收收入受工资变动的影响不大。
四、进一步的比较分析
(一)对应分析
上述基于部分OECD国家面板数据的实证分析,得到了最优社会保障税税率为30.346%,然而上述结论是基于OECD国家的历年数据进行分析得出的,我国社会保障税税率设计,既要参考国际数据,又要结合我国实际国情。因此,利用我国和OECD国家2013年的截面数据,运用多重对应分析的方法,找出和我国国情最接近的OECD国家,结合该国税率和之前得到的最优税率,设计我国社会保障税最优税率。
1.变量选择
对应分析是一种分析定性变量相互之间关系的分析方法,主要是根据降维的思想,将多个变量放在联合分布图中,用变量之间平面距离来度量相关程度。在此基础上,多重对应分析将分析的定性变量个数由2分拓展到多个。
为了完成多重对应分析,首先要构建一套指标体系,选择一组变量,反映影响不同国家社会保障税税率水平的因素。基于数据的可得性和经济解释的合理性,本文选择5个不同变量反映人口年龄结构、经济增长、人口流动、税收征管、养老历史传统等因素。选择的变量如表5所示。
表5 变量选择表
变 量 |
描 述 |
老龄化水平 |
65岁以上人口占总人口的比例 |
经济增长情况 |
GDP增长率 |
人口流动情况 |
外来人口流入量 |
社会保障税征收情况 |
社会保障税收入占GDP的比例 |
养老传统 |
历史传统更偏好家庭养老或政府养老 |
2.分类标准
由于对应分析主要针对定性变量,而上述前四个变量都是定量变量,需要按照一定的标准,对取得的原始数据进行分类,对不同类别分别赋值。本文以样本均值为标准,将前四个变量样本值分为两类,小于样本均值的样本赋值为1,大于均值的样本赋值为2;第五个变量根据国情和地域情况进行分类,两组值分别赋值为1和2。
3.对应分析结果
经过8次迭代,达到了汇合检验值,得到模型结果如表6所示。其中,克隆巴赫系数(信度)分别为0.818和0.788,位于可接受的范围;惯量之和为0.723,表明模型良好。最终,得到的多重对应分析如图2所示。
维度 |
克隆巴赫系数 Cronbach’s Alpha |
方差考虑情况 | ||
总计(特征值) |
惯量 |
方差百分比 | ||
1 |
0.818 |
3.795 |
0.380 |
37.953 |
2 |
0.788 |
3.439 |
0.344 |
34.388 |
总计 |
|
7.234 |
0.723 |
|
平均值 |
0.804 |
3.617 |
0.362 |
36.171 |
表6 模型结果表
图2 多重对应分析图
(二)结果分析与国情比较
在上面的对应分析图中,和我国更为接近的是日本。日本不仅和我国同处东亚地区,深受我国传统文化和思想的影响,而且老龄化程度较高,养老等社会保障制度较为完善。因此,我国社会保障税率的设计可以参照日本来进行。日本近年来社会保障税税率的情况如图3所示。由图3可知,日本近年来社会保障税税率趋近30%,而30%正好为前文根据OECD国家面板数据进行回归分析得到的最优社会保障税税率。由此可见,我国开征社会保障税可以将税率定为30%,既符合我国国情,又符合国际经验,可以实现在对经济增长影响较小的前提下筹集到较多的社会保障税收入的目标。
图3 日本社会保障税税率情况
五、结论与政策建议
本文在前人研究的基础上,对社会保障税最优税率进行理论分析和实证研究,得出以下结论与建议:
首先,社会保障税收入与税率之间的关系不是简单的线性关系,而是非线性关系,存在两个门槛值,分别为13.346%和30.347%。当税率跨越第二个门槛值时,曲线斜率显著地由大变小。根据理论分析和OECD国家面板数据的门槛回归结果,确定最优社会保障税税率为30.347%。
其次,借鉴国际经验,日本与我国同处于东亚地区,历史上深受中国传统文化和思想的影响,而且老龄化程度较高,养老等社会保障制度较为完善。因此,考虑到老龄化水平、经济增长情况和养老传统等因素,在社会保障税率设计中可以选择日本作为参考,即社会保障税率以30%左右为宜。
最后,考虑到我国实际国情,中国尚不具备西方国家“从摇篮到坟墓”式福利制度的经济条件,社会保障制度有待于进一步完善,税负水平不宜过高。因此,我们认为,中国社会保障税税率的选择以不超过30%为宜。这主要是基于我国现行的税制结构和税负水平,是在借鉴国际经验的基础上,符合我国国情的最优税率,从而在保证对经济增长的扭曲程度最小的前提下,筹集最多的税收收入,兼顾公平和效率。
参考文献:
〔1〕董文赜.关于开征社会保障税的几个问题——对个人所得税改革和社会保障税开征的综合分析[J]. 财贸研究,2002,(01):94-99.
〔2〕范雯.社会保险税的国际比较及借鉴[J].现代商贸工业,2008,(05):168-169.
〔3〕陈玲.我国开征社会保障税税率形式选择的探讨[J].中国商界(上半月),2009,(05):30-31.
〔4〕邵晓琰.我国开征社会保障税的效应分析[J].吉林师范大学学报(人文社会科学版),2015,43(01):104-109 +124.
〔5〕贾康,杨良初,王玲. 实行费改税开征社会保险税的研究[J]. 财政研究,2001,(01):25-34.
〔6〕汪柱旺,黄蕾. 试论社会保障税税率[J]. 江西财经大学学报,2005,(06):11-13.
〔7〕阎坤,曹亚伟.我国社会保障税制设计构想[J]. 税务研究,2003,(05):43-49.
〔8〕马国强,谷成.中国开征社会保障税的几个基本问题[J]. 财贸经济,2003(05):32-35.
〔9〕李梦娟.社会保障税的开征及其制度设计[J]. 税务研究,2011(02):58-61.
〔10〕黄菡.社会保障税的国际比较及对我国实践的借鉴[J]. 财经问题研究,2005(06):94-97.
〔11〕张琦.我国开征社会保障税探析[J]. 宏观经济管理,2005(10):38-40.
〔12〕刘小兵.中国社会保障税的制度设计及其释义[J]. 财贸经济,2001(09):18-22.
〔13〕邢恺,杨滢.我国开征社会保障税的构想[J]. 财政研究,2006(09):49-50.
〔14〕刘瑞杰,赵宇.关于我国开征社会保障税的若干思考[J]. 财贸经济,1996(11):56-57+47.
〔15〕彭志文,郭路.财政支出结构、最优税率区间与经济增长[J]. 财政研究,2011(04):44-47.
〔16〕周伟,武康平.个税免征额、税率与拉弗曲线[J]. 经济学家,2011(10):68-76.
〔17〕龚六堂,邹恒甫.最优税率、政府转移支付与经济增长[J]. 数量经济技术经济研究,2002(01):63-66.
〔18〕马拴友.我国的拉弗最高税率和最优税率估计[J]. 经济学家,2002(01):73-79.
〔19〕Pecorino.Paul. The growth rate effects of tax reform[J]. Oxford Economic Paper,1994,46:492-501.
〔20〕Scully,G.W.. The “Growth tax” in the United States[J]. Public Choice,1995,85:71-80.
〔21〕Scully,G.W.. Taxation and economic growth in New Zealand[J]. Pacific Economic Review,1996,1(2): 169-177.
〔22〕Hansen B. E. Threshold effects in non-dynamic panels:Estimation,testing, and inference[J]. Journal of Econometrics,1999,93(2):345-368.
〔23〕HansenB.E. Inference when a nuisance parameter is not identified under the null hypothesis [J]. Econometrica,1996,64:413-430.